Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Article in English | MEDLINE | ID: mdl-38695297

ABSTRACT

CD20+ T cells constitute a small subset of T cells. These are found among CD4+, CD8+, CD4+CD8+, CD4-CD8- T, and TCRγδ+ T cells, and have been poorly characterized. The aim of this study was to characterize peripheral blood (PB) CD20+ T cells and compare them to their PB CD20- T cell counterparts. PB from 17 healthy individuals was collected. The distribution of CD20+ T cells among maturation-associated T cells compartments (naïve, central memory, transitional memory, effector memory, and effector T cells), their polarization, activation status, and expression of immune-regulatory proteins were evaluated by flow cytometry. Their function was also assessed, by measuring IFN-γ, TNF-α, and IL-17 production. Compared with CD20- T cells, CD20+ T cells represent a higher proportion of transitional memory cells. Furthermore, CD20+ T cells display a proinflammatory phenotype, characterized by the expansion of Th1, Th1/17, and Tc1 cell subsets , associated to a high expression of activation (CD25) and exhaustion (PD-1) markers. In addition, the simultaneous production of the proinflammatory cytokines IFN-γ, TNF-α, and IL-17 was also detected in CD4+CD20+ T cells. Our results show that CD20+ T cells are phenotypically and functionally different from CD20- T cells, suggesting that these cells are a distinct subset of T cells.

2.
Front Oncol ; 14: 1380648, 2024.
Article in English | MEDLINE | ID: mdl-38606091

ABSTRACT

Introduction: In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer. Methods: Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease. Results and discussion: CD20+ T cells were more represented within the CD8+ T cell compartment and they showed a predominant memory Tc1 phenotype. CD20+ T cells were less represented in MBL and CLL patients vs healthy controls, particularly among those with unmutated IGVH gene. The expansion of malignant B cells was accompanied by phenotypic and functional changes in CD20+ T cells, including an increase in follicular helper CD4+ CD20+ T cells and CD20+ Tc1 cells, in addition to the expansion of the TCR Vß 5.1 in CD4+ CD20+ T cells in CLL.

3.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534483

ABSTRACT

Platelet-rich plasma (PRP) has emerged as a promising therapy in regenerative medicine. However, the lack of standardization in PRP preparation protocols presents a challenge in achieving reproducible and accurate results. This study aimed to optimize the PRP preparation protocol by investigating the impact of two different anticoagulants, sodium citrate (SC) and ethylenediaminetetraacetic acid (EDTA), and resuspension media, plasma versus sodium chloride (NaCl). Platelet recovery rates were calculated and compared between groups, in addition to platelet activity and vascular endothelial growth factor (VEGF) released into plasma after PRP activation. The platelet recovery rate was higher with EDTA in comparison to SC (51.04% vs. 29.85%, p = 0.005). Platelet activity was also higher, with a higher expression of two platelet antibodies, platelet surface P-Selectin (CD62p) and PAC-1, in the EDTA group. The concentration of VEGF was higher with SC in comparison to EDTA (628.73 vs. 265.44 pg/mL, p = 0.013). Platelet recovery rates and VEGF levels were higher in PRP resuspended in plasma when compared to NaCl (61.60% vs. 48.61%, p = 0.011 and 363.32 vs. 159.83 pg/mL, p = 0.005, respectively). Our study reinforces the superiority of EDTA (as anticoagulant) and plasma (for resuspension) in obtaining a higher platelet recovery and preserving platelet functionality during PRP preparation.

4.
Acta Neurol Belg ; 124(2): 603-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441808

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) and has been known as T-cell mediated. However, the contribution of multiple cell types, notably natural killer (NK) cells, has also been reported. AIM: To quantify circulating total NK cells and its subpopulations, CD56 dim and bright, and to characterize the functional phenotype and IFN-γ and TNF-α production in relapsing-remitting patients treated with IFN-ß and in apparently healthy controls. RESULTS: CD56bright NK cells were found to be the least represented subpopulation. In relapse patients, the frequencies of IFN-γ-producing NK cells and their subpopulations were significantly decreased. In remission patients, CD56dim NK cells expressed high levels of HLA-DR and CD54. CONCLUSION: These results suggest that remission RRMS patients, although in an inactive stage of MS, present circulating NK cells with an activation phenotype, supporting the idea that NK cells may be relevant mediators in the MS pathophysiology.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis, Relapsing-Remitting/metabolism , Multiple Sclerosis/metabolism , Killer Cells, Natural/metabolism , Central Nervous System , Gene Expression
5.
Biomolecules ; 14(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38397455

ABSTRACT

Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.


Subject(s)
Bariatric Surgery , Th1 Cells , Humans , T-Lymphocytes, Regulatory , T-Lymphocyte Subsets , Obesity/surgery , Obesity/metabolism
6.
Life Sci ; 336: 122306, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38030055

ABSTRACT

Obesity-related chronic low-grade inflammation may trigger insulin resistance and type 2 diabetes (T2D) development. Cells with regulatory phenotype have been shown to be reduced during obesity, especially CD4+ Treg cells. However, little is known about the CD8+ Treg cells. Therefore, we aim to characterize the CD8+ Treg cells in human peripheral blood and adipose tissue, specifically, to address the effect of obesity and insulin resistance in this regulatory immune cell population. A group of 42 participants with obesity (OB group) were recruited. Fourteen of them were evaluated pre- and post-bariatric surgery. A group of age- and sex-matched healthy volunteers (n = 12) was also recruited (nOB group). CD8+ Treg cell quantification and phenotype were evaluated by flow cytometry, in peripheral blood (PB), subcutaneous (SAT), and visceral adipose tissues (VAT). The OB group displayed a higher percentage of CD8+ Treg cells in PB, compared to the nOB. In addition, they were preferentially polarized into Tc1- and Tc1/17-like CD8+ Treg cells, compared to nOB. Moreover, SAT displayed the highest content of CD8+ Tregs infiltrated, compared to PB or VAT, while CD8+ Tregs infiltrating VAT displayed a higher percentage of cells with Tc1-like phenotype. Participants with pre-diabetes displayed a reduced percentage of TIM-3+CD8+ Tregs in circulation, and PD-1+CD8+ Tregs infiltrated in the VAT. An increase in the percentage of circulating Tc1-like CD8+ Treg cells expressing PD-1 was observed post-surgery. In conclusion, obesity induces significant alterations in CD8+ Treg cells, affecting their percentage and phenotype, as well as the expression of important immune regulatory molecules.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , T-Lymphocytes, Regulatory , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/genetics , Programmed Cell Death 1 Receptor/metabolism , Obesity/metabolism , CD8-Positive T-Lymphocytes/metabolism
7.
J Exp Clin Cancer Res ; 42(1): 328, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031171

ABSTRACT

BACKGROUND: Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS: We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS: We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS: Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Animals , Mice , Proteome/metabolism , Secretome , Lung/pathology , Lung Neoplasms/pathology , Osteosarcoma/pathology , Bone Neoplasms/pathology , Glycoproteins/metabolism , Biomarkers/metabolism , Tumor Microenvironment , Extracellular Matrix Proteins/metabolism
8.
BMC Cardiovasc Disord ; 23(1): 558, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968611

ABSTRACT

BACKGROUND AND AIMS: Monocytes and dendritic cells (DC) are both key inflammatory cells, with recognized effects on cardiac repair. However, there are distinct subsets of monocytes with potential for beneficial or detrimental effects on heart failure (HF) pathogenesis. The connection between reverse cardiac remodelling, the potential anti-inflammatory effect of cardiac resynchronization therapy (CRT) and monocytes and DC homeostasis in HF is far from being understood. We hypothesized that monocytes and DC play an important role in cardiac reverse remodelling and CRT response. Therefore, we aimed to assess the potential role of baseline peripheral levels of blood monocytes and DC subsets and their phenotypic and functional activity for CRT response, in HF patients. As a secondary objective, we aimed to evaluate the impact of CRT on peripheral blood monocytes and DC subsets, by comparing baseline and post CRT circulating levels and phenotypic and functional activity. METHODS: Forty-one patients with advanced HF scheduled for CRT were included in this study. The quantification and phenotypic determination of classical (cMo), intermediate (iMo) and non-classical monocytes (ncMo), as well as of myeloid (mDC) and plasmacytoid DC (pDC) were performed by flow cytometry in a FACSCanto™II (BD) flow cytometer. The functional characterization of total monocytes and mDC was performed by flow cytometry in a FACSCalibur flow cytometer, after in vitro stimulation with lipopolysaccharide from Escherichia coli plus interferon (IFN)-γ, in the presence of Brefeldina A. Comparisons between the control and the patient group, and between responders and non-responders to CRT were performed. RESULTS: Compared to the control group, HF population presented a significantly lower frequency of pDC at baseline and a higher proportion of monocytes and mDC producing IL-6 and IL-1ß, both before and 6-months after CRT (T6). There was a remarkable decrease of cMo and an increase of iMo after CRT, only in responders. The responder group also presented higher ncMo values at T6 compared to the non-responder group. Both responders and non-responders presented a decrease in the expression of CD86 in all monocyte and DC populations after CRT. Moreover, in non-responders, the increased frequency of IL-6-producing DC persisted after CRT. CONCLUSION: Our study provides new knowledge about the possible contribution of pDC and monocytes subsets to cardiac reverse remodelling and response to CRT. Additionally, CRT is associated with a reduction on CD86 expression by monocytes and DC subsets and in their potential to produce pro-inflammatory cytokines, contributing, at least in part, for the well described anti-inflammatory effects of CRT in HF patients.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy/adverse effects , Monocytes , Interleukin-6 , Heart Failure/diagnosis , Heart Failure/therapy , Dendritic Cells , Anti-Inflammatory Agents
9.
J Proteome Res ; 22(9): 2995-3008, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37606915

ABSTRACT

Autoimmune diseases (AID), such as systemic lupus erythematosus (SLE) and systemic sclerosis (SS), are complex conditions involving immune system dysregulation. Diagnosis is challenging, requiring biomarkers for improved detection and prediction of relapses. Lipids have emerged as potential biomarkers due to their role in inflammation and immune response. This study uses an untargeted C18 RP-LC-MS lipidomics approach to comprehensively assess changes in lipid profiles in patients with SLE and SS. By analyzing whole blood and plasma, the study aims to simplify the lipidomic analysis, explore cellular-level lipids, and compare lipid signatures of SLE and SS with healthy controls. Our findings showed variations in the lipid profile of SLE and SS. Sphingomyelin and ceramide molecular species showed significant increases in plasma samples from SS patients, suggesting an atherosclerotic profile and potentially serving as lipid biomarkers. Phosphatidylserine species in whole blood from SLE patients exhibited elevated levels supporting previously reported dysregulated processes of cell death and defective clearance of dying cells in this AID. Moreover, decreased phospholipids bearing PUFA were observed, potentially attributed to the degradation of these species through lipid peroxidation processes. Further studies are needed to better understand the role of lipids in the pathological mechanisms underlying SLE and SS.

10.
Cancers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37370832

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent type of cancer, and liver metastasis is the most common site of metastatic development. In the tumor microenvironment (TME), various innate immune cells are known to influence cancer progression and metastasis occurrence. CD274 (PD-L1) and CD206 (MRC1) are proteins that have been associated with poor prognosis and disease progression. We conducted a study on tumoral and non-tumoral biopsies from 47 patients with CRC liver metastasis, using flow cytometry to phenotypically characterize innate immune cells. Our findings showed an increase in the expression of CD274 on classical, intermediate, and non-classical monocytes when comparing tumor with non-tumor samples. Furthermore, tumor samples with a desmoplastic growth pattern exhibited a significantly decreased percentage of CD274- and CD206-positive cells in all monocyte populations compared to non-desmoplastic samples. We found a correlation between a lower expression of CD206 or CD274 on classical, intermediate, and non-classical monocytes and increased disease-free survival, which points to a better prognosis for these patients. In conclusion, our study has identified potential new targets and biomarkers that could be incorporated into a personalized medicine approach to enhance the outcome for colorectal cancer patients.

11.
Biomedicines ; 11(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37239000

ABSTRACT

Systemic sclerosis (SSc) is an immune-mediated disease wherein T cells are particularly implicated, presenting a poor prognosis and limited therapeutic options. Thus, mesenchymal-stem/stromal-cell (MSC)-based therapies can be of great benefit to SSc patients given their immunomodulatory, anti-fibrotic, and pro-angiogenic potential, which is associated with low toxicity. In this study, peripheral blood mononuclear cells from healthy individuals (HC, n = 6) and SSc patients (n = 9) were co-cultured with MSCs in order to assess how MSCs affected the activation and polarization of 58 different T cell subsets, including Th1, Th17, and Treg. It was found that MSCs downregulated the activation of 26 out of the 41 T cell subsets identified within CD4+, CD8+, CD4+CD8+, CD4-CD8-, and γδ T cells in SSc patients (HC: 29/42) and affected the polarization of 13 out of 58 T cell subsets in SSc patients (HC: 22/64). Interestingly, SSc patients displayed some T cell subsets with an increased activation status and MSCs were able to downregulate all of them. This study provides a wide-ranging perspective of how MSCs affect T cells, including minor subsets. The ability to inhibit the activation and modulate the polarization of several T cell subsets, including those implicated in SSc's pathogenesis, further supports the potential of MSC-based therapies to regulate T cells in a disease whose onset/development may be due to immune system's malfunction.

12.
BMJ Open ; 13(5): e068996, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130692

ABSTRACT

OBJECTIVES: Healthcare workers (HCWs) were the first to be prioritised for COVID-19 vaccination. This study aims to estimate the COVID-19 vaccine effectiveness (VE) against SARS-CoV-2 symptomatic infection among HCWs in Portuguese hospitals. DESIGN: Prospective cohort study. SETTING AND PARTICIPANTS: We analysed data from HCWs (all professional categories) from three central hospitals: one in the Lisbon and Tagus Valley region and two in the central region of mainland Portugal, between December 2020 and March 2022. VE against symptomatic SARS-CoV-2 infection was estimated as one minus the confounder adjusted HRs by Cox models considering age group, sex, self-reported chronic disease and occupational exposure to patients diagnosed with COVID-19 as adjustment variables. RESULTS: During the 15 months of follow-up, the 3034 HCWs contributed a total of 3054 person-years at risk, and 581 SARS-CoV-2 events occurred. Most participants were already vaccinated with a booster dose (n=2653, 87%), some are vaccinated with only the primary scheme (n=369, 12.6%) and a few remained unvaccinated (n=12, 0.4%) at the end of the study period. VE against symptomatic infection was 63.6% (95% CI 22.6% to 82.9%) for HCWs vaccinated with two doses and 55.9% (95% CI -1.3% to 80.8%) for HCWs vaccinated with one booster dose. Point estimate VE was higher for individuals with two doses taken between 14 days and 98 days (VE=71.9%; 95% CI 32.3% to 88.3%). CONCLUSION: This cohort study found a high COVID-19 VE against symptomatic SARS-CoV-2 infection in Portuguese HCWs after vaccination with one booster dose, even after Omicron variant occurrence. The small sample size, the high vaccine coverage, the very low number of unvaccinated individuals and the few events observed during the study period contributed to the low precision of the estimates.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Prospective Studies , Vaccine Efficacy , SARS-CoV-2 , Health Personnel , Hospitals
13.
BMC Cardiovasc Disord ; 23(1): 89, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792985

ABSTRACT

BACKGROUND: T cells have been implicated in the development and progression of inflammatory processes in chronic heart failure (CHF). Cardiac resynchronization therapy (CRT) has beneficial effects on symptoms and cardiac remodeling in CHF. However, its impact on the inflammatory immune response remains controversial. We aimed to study the impact of CRT on T cells in heart failure (HF) patients. METHODS: Thirty-nine HF patients were evaluated before CRT (T0) and six months later (T6). Quantification of T cells, their subsets, and their functional characterization, after in vitro stimulation, were evaluated by flow cytometry. RESULTS: T regulatory (Treg) cells were decreased in CHF patients (healthy group (HG): 1.08 ± 0.50 versus (heart failure patients (HFP)-T0: 0.69 ± 0.40, P = 0.022) and remaining diminished after CRT (HFP-T6: 0.61 ± 0.29, P = 0.003). Responders (R) to CRT presented a higher frequency of T cytotoxic (Tc) cells producing IL-2 at T0 compared with non-responders (NR) (R: 36.52 ± 12.55 versus NR: 24.71 ± 11.66, P = 0.006). After CRT, HF patients presented a higher percentage of Tc cells expressing TNF-α and IFN-γ (HG: 44.50 ± 16.62 versus R: 61.47 ± 20.54, P = 0.014; and HG: 40.62 ± 15.36 versus R: 52.39 ± 18.66, P = 0.049, respectively). CONCLUSION: The dynamic of different functional T cell subpopulations is significantly altered in CHF, which results in an exacerbated pro-inflammatory response. Even after CRT, it seems that the inflammatory condition underlying CHF continues to evolve with the progression of the disease. This could be due, at least in part, to the inability to restore Treg cells levels. TRIAL REGISTRATION: Observational and prospective study with no trial registration.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy/adverse effects , T-Lymphocytes, Regulatory , Prospective Studies , Heart Failure/diagnosis , Heart Failure/therapy , Heart , Chronic Disease , Treatment Outcome
14.
Mol Omics ; 19(3): 229-237, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36625394

ABSTRACT

Dried blood spot (DBS) is a minimally invasive sampling technique that has several advantages over conventional venipuncture/arterial blood sampling. More recently, DBS has also been applied for lipidomics analysis, but this is an area that requires further research. The few works found in the literature on lipidomics of DBS samples performed the analysis in adult samples, leaving pediatric ages unmapped. The objective of this study was to assess the variability of the lipid profile (identified by high-resolution C18 RP-LC-MS/MS) of DBS at pediatric age (0-10 days, 2-18 months, and 3-13 years) and to identify age-related variations. The results revealed that the lipidomic signature of the three age groups is significantly different, especially for a few species of neutral lipids and phosphatidylcholines. The main contributors to the differentiation of the groups correspond to 3 carnitine (Car), 2 cholesteryl ester (CE), 2 diacylglycerol (DG), 2 triacylglycerol (TG), 3 phosphatidylcholine (PC), 1 ether-linked PC, 1 phosphatidylethanolamine (PE), 1 ether-linked PE and 1 phosphatidylinositol (PI) species, all with statistically significant differences. Additionally, lipid species containing linoleic acid (C18:2) were shown to have significantly lower levels in the 0-10 days group with a gradual increase in the 2-18 month, reaching the highest concentrations in the 3-13 year group. The results of this study highlighted the adaptations of the lipid profile at different pediatric ages. These results may help improve understanding of the evolution of lipid metabolism throughout childhood and should be investigated further.


Subject(s)
Carnitine , Tandem Mass Spectrometry , Adult , Humans , Child , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Triglycerides , Lipidomics , Phosphatidylcholines
15.
Immunology ; 168(4): 597-609, 2023 04.
Article in English | MEDLINE | ID: mdl-36279244

ABSTRACT

Immunoparalysis is associated with poorer outcomes in the paediatric intensive care unit (PICU) setting. We aimed to determine the group of patients with higher chances of immunoparalysis and correlate this status with increased risks of nosocomial infection and adverse clinical parameters. We conducted an exploratory study with prospective data collection in a university-affiliated tertiary medical, surgical, and cardiac PICU. Fifteen patients with multiple organ dysfunction syndrome were included over a period of 6 months. Monocyte's human leucocyte antigen (HLA)-DR expression and tumour necrosis factor (TNF)-α and interleukin (IL)-6 production were measured by flow-cytometry at three time points (T1 = 1-2 days; T2 = 3-5 days; T3 = 6-8 days). Using the paediatric logistic organ dysfunction-2 score to assess initial disease severity, we established the optimal cut-off values of the evaluated parameters to identify the subset of patients with a higher probability of immunoparalysis. A comparative analysis was performed between them. Sixty per cent were males; the median age was 4.1 years. Considering the presence of two criteria in T1 (classical monocytes mean fluorescence intensity [MFI] for HLA-DR ≤ 1758.5, area under the curve (AUC) = 0.775; and frequency of monocytes producing IL-6 ≤ 68.5%, AUC = 0.905) or in T3 (classical monocytes MFI of HLA-DR ≤ 2587.5, AUC = 0.675; and frequency of monocytes producing TNF-α ≤ 93.5%, AUC = 0.833), a variable to define immunoparalysis was obtained (100% sensitivity, 81.5% specificity). Forty per cent of patients were assigned to the immunoparalysis group. In this: a higher frequency of nosocomial infection (p = 0.011), vasoactive inotropic score (p = 0.014) and length of hospital stay (p = 0.036) was observed. In the subgroup with the diagnosis of sepsis/septic shock (n = 5), patients showed higher percentages of non-classical monocytes (p = 0.004). No mortality was recorded. A reduction in classical monocytes HLA-DR expression with lower frequencies of monocytes producing TNF-α and IL-6 during the first week of critical illness, appears to be a good marker of immunoparalysis; these findings relate to an increased risk of nosocomial infection and deleterious outcomes. The increased frequency of non-classical monocytes in patients with sepsis/septic shock is suggestive of a better prognosis.


Subject(s)
Cross Infection , Sepsis , Shock, Septic , Male , Humans , Child , Child, Preschool , Female , Tumor Necrosis Factor-alpha , Interleukin-6 , Critical Illness , HLA-DR Antigens , Monocytes
16.
Clin Exp Med ; 23(2): 529-537, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35190936

ABSTRACT

A broad understanding on how SARS-CoV-2 infection and vaccination mobilize the immune system is necessary to find the best predictors of long-term protection and identify individuals that would benefit from additional vaccine doses. This study aims to understand the effect of a single dose of Pfizer-BioNTech BNT162b2 COVID-19 vaccine, in individuals recovered from SARS-CoV-2 infection, on circulating CD4+ T follicular helper (Tfh)-cells, Spike-specific T-cells and IgG/IgA antibodies. For that, peripheral blood samples from 50 healthcare professionals, recovered from SARS-CoV-2 infection, collected immediately before (T1) and 15 days after (T2) vaccine administration, were used to analyze the frequency and numbers of Tfh-cells and their subsets, serum titers of SARS-CoV-2-specific antibodies, and SARS-CoV-2-specific T-cells. Six months after infection (T1), 96% of recovered participants presented either IgG or T-cells specific for Spike, however, Spike-specific T-cells were missing in 16% of them. These individuals presented lower levels of Spike-specific IgG (T1 and T2), IgA (T1), and Spike-specific T-cells (T2). Vaccination increased the percentage of participants reactive for Spike-specific T-cells (from 64 to 98%), IgG (from 90 to 100%) and IgA (from 48 to 98%). It also mobilized circulating Tfh-cells, increasing their frequency and activation, and promoting Tfh17 polarization, restoring the decreased numbers of Tfh-cells (especially Tfh17) observed in recovered participants. Interestingly, Tfh percentage correlated with Spike-specific IgG levels. Our data showed that a single dose of vaccine efficiently restored Spike-specific T-cells, and IgG and IgA antibodies. Mobilization of Tfh-cells, and their correlation with IgG levels, suggest that vaccination induced a functional Tfh cell response.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G , Vaccination , Delivery of Health Care
17.
Cancers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36551555

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers worldwide, with liver metastasis being its main cause of death. This study harvested fresh biological material from non-tumor and tumor tissue from 47 patients with CRC liver metastasis after surgery, followed by mechanical cellular extraction and stain-lyse-wash direct immunofluorescence technique. Here, 60 different T-cell populations were characterized by flow cytometry. Tumor samples were also subdivided according to their growth pattern into desmoplastic and non-desmoplastic. When we compared tumor versus non-tumor samples, we observed a significantly lower percentage of T-lymphocyte infiltration in the tumor in which the CD4+ T-cell density increased compared to the CD8+ T cells. T regulatory cells also increased within the tumor, even with an activated phenotype (HLA-DR+). A higher percentage of IL-17-producing cells was present in tumor samples and correlated with the metastasis size. In contrast, we also observed a significant increase in CD8+ follicular-like T cells (CD185+), suggesting a cytotoxic response to cancer cells. Additionally, most infiltrated T cells exhibit an intermediate activation phenotype (CD25+). In conclusion, our results revealed potential new targets and prognostic biomarkers that could take part in an algorithm for personalized medicine approaches improving CRC patients' outcomes.

18.
Bioengineering (Basel) ; 9(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36551011

ABSTRACT

Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.

19.
Clin Cancer Res ; 28(21): 4771-4781, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36074126

ABSTRACT

PURPOSE: Early intervention in smoldering multiple myeloma (SMM) requires optimal risk stratification to avoid under- and overtreatment. We hypothesized that replacing bone marrow (BM) plasma cells (PC) for circulating tumor cells (CTC), and adding immune biomarkers in peripheral blood (PB) for the identification of patients at risk of progression due to lost immune surveillance, could improve the International Myeloma Working Group 20/2/20 model. EXPERIMENTAL DESIGN: We report the outcomes of 150 patients with SMM enrolled in the iMMunocell study, in which serial assessment of tumor and immune cells in PB was performed every 6 months for a period of 3 years since enrollment. RESULTS: Patients with >0.015% versus ≤0.015% CTCs at baseline had a median time-to-progression of 17 months versus not reached (HR, 4.9; P < 0.001). Presence of >20% BM PCs had no prognostic value in a multivariate analysis that included serum free light-chain ratio >20, >2 g/dL M-protein, and >0.015% CTCs. The 20/2/20 and 20/2/0.015 models yielded similar risk stratification (C-index of 0.76 and 0.78). The combination of the 20/2/0.015 model with an immune risk score based on the percentages of SLAN+ and SLAN- nonclassical monocytes, CD69+HLADR+ cytotoxic NK cells, and CD4+CXCR3+ stem central memory T cells, allowed patient' stratification into low, intermediate-low, intermediate-high, and high-risk disease with 0%, 20%, 39%, and 73% rates of progression at 2 years. CONCLUSIONS: This study showed that CTCs outperform BM PCs for assessing tumor burden. Additional analysis in larger series are needed to define a consensus cutoff of CTCs for minimally invasive stratification of SMM.


Subject(s)
Multiple Myeloma , Smoldering Multiple Myeloma , Humans , Disease Progression , Prognosis , Immunoglobulin Light Chains , Risk Assessment , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy
20.
GE Port J Gastroenterol ; 29(4): 273-279, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35979248

ABSTRACT

Antibiotics are known to cause adverse reactions, but multiple organ involvement associated with nonspecific symptoms can lead to a delay in diagnosis. A definitive correlation between each toxin and its effects is difficult to establish due to concomitant potential toxins in the circulation. This article highlights an uncommon case of concomitant nitrofurantoin-induced autoimmune hepatitis and lung fibrosis that fulfills the definitive clinical criteria for diagnosis, presenting histological, imagiological, and immunological evidence of nitrofurantoin-induced toxicity. It occurred in a 68-year-old woman with extended nitrofurantoin intake for urinary tract infection prophylaxis who presented with progressive exercise dyspnea and jaundice. Similar published cases are also reviewed in this article.


Os antibióticos são causas conhecidas de reações adversas, mas o envolvimento multiorgânico associado à sintomatologia inespecífica pode conduzir ao atraso diagnóstico. Devido às potenciais toxinas concomitantemente em circulação, é muitas vezes difícil estabelecer uma correlação definitiva entre cada toxina e os seus efeitos.Este artigo salienta um caso incomum de hepatite autoimune e fibrose pulmonar induzidas pela nitrofurantoína e que cumpre critérios definitivos de diagnóstico, apresentando-se dados histológicos, imagiológicos e imunológicos da toxicidade induzida pela nitrofurantoína.O caso ocorre numa mulher de 68 anos de idade, com toma prolongada de nitrofurantoína como profilaxia de infeção urinária, e que se apresenta com dispneia de esforço progressiva e icterícia. O artigo faz ainda uma revisão de casos semelhantes publicados.

SELECTION OF CITATIONS
SEARCH DETAIL
...